EMPIR Decarb:

Metrology for decarbonising the gas grid

WP1: Flow Metering NEL, VSL, DNV, Enagas

Decarbonising the Gas Grid: Measurement Challenges and Standardisation

2nd November 2023

WP1: Flow metering

Task 1.1: Understanding operating conditions for decarbonised gas grids

Task 1.2: Traceable flow facilities for the decarbonised gas grid

Task 1.3: Accuracy testing for hydrogen blending in natural gas

Task 1.4: Test Programme for carbon dioxide and CCS

Gabriele Chinello

Measurement Needs

To **develop metrology infrastructure**, including development of new traceable facilities to enable calibration of flow meters:

- for hydrogen and hydrogen-enriched natural gas in the gas grid in accordance with the Directive 2014/32/EU Measuring Instruments (MID) with maximum permissible errors as low as ±1 % depending on the type of flow meter; and
- 2. metering of carbon dioxide in Carbon Capture and Storage (CCS) processes in accordance with the Emissions Trading System (EU ETS) with an accuracy of ±2.5 %

Task 1.1 – Progress and Outputs

To collect the required knowledge of the **operating ranges** of gas grids within Europe and plans for decarbonisation for each country. Enabling the WP1 partners to target appropriate operating ranges when developing new measurement capabilities and select **appropriate flow meters** for the subsequent test programmes

Hydrogen-and-

gas-Task-1.1.5-

hydrogen-

Towards Standardized Measurement of the CO₂ Transferred Across the Carbon Capture and Sequestration chain: A Comprehensive Review and Research Agenda Gabriele Chinello¹, Yessica Arellano², Roland Span³, Dennis van Putten⁴, Ara Abdulrahman⁵ Karine Arrhenius⁶, Arul Murugan¹ 'TÜV SÜD National Engineering Laboratory ²SINTEF Energy Research ³Ruhr University Bochum ⁴DNV Netherlands B.V. PVSL Dutch Metrology Institute "Research Institutes of Sweden AB (RISE National Physical Laborator ABSTRACT The global impact of anthropogenic greenhouse gas emissions on climate change is undeniable, with carbon dioxide (CO2) identified as the primary contributor to global warming. Urgent action is required to mitigate global warming by reducing anthropogenic CO2 emissions to achieve net-zero levels. Carbon Capture and Sequestration (CCS) stands as a proven technology to curtail CO2 emissions from various sources by capturing and sequestering carbon dioxide in geological formations. To address the challenge of deploying CCS on a global scale, it is crucial to accurately quantify the captured, transported, and stored CO2 since quantification underpins regulations and commercial contracts. However, the lack of standardization in CCS projects and measurement methodologies poses a significant challenge, necessitating a common measurement framework to ensure the transparency and reliability of these efforts. This article provides a comprehensive review, 230+ references, of the latest results and operating conditions for current measurement technologies overing the entire measuring system and not just a single instrument. As such it is a first of its kind effort at establishing a comprehensive framework for CCS measurement. This article serves as a single source of references and as a step toward developing an international documentary standard for the transferred CO2 measurement. By addressing measurement challenges and providing

In progress

comprehensive recommendations for future research, it contributes to the ongoing efforts to mitigate

alobal warming through the widespread deployment of CCS technology

Task 1.2 – Progress

To develop **new primary standards and traceable flow calibration facilities** for metering of hydrogen and hydrogen-enriched natural gas.

H₂ & H₂/CH₄ blends

H₂/NG blends

H₂ & H₂/CH₄ blends

VSL Completed

Completed

DNV

NEL In progress (Q1 2024) EMPIR EN ENTER The full relative is columbra to the European Union's Horizon 2020

Task 1.2 – Progress

The VSL and NEL new primary standards will be used in an intercomparison to provide evidence for the claimed measurement uncertainties.

H₂ & H₂/CH₄ blends

H₂ & H₂/CH₄ blends

VSL

Intercomparison

In progress (Q1 2024)

Task 1.2 - Outputs

 3 traceable flow facilities operating with hydrogen and hydrogen-enriched natural gas. 2 completed, 1 in progress (Q1 2024)

 1 peer-reviewed article detailing the new traceable flow facilities design and performance, and results from the intercomparison. This will form Deliverable D1.

New traceable flow facilities to enable calibration of flow meters for hydrogen and hydrogen-enriched natural gas in the gas grid

In progress (May 2024)

www.decarbgrid.eu

Task 1.3 - Progress

Test 8 different flow meters with hydrogen and hydrogen/natural gas blends.

Task 1.3 – Tests at VSL

Meter 1: Thermal mass

Task 1.3 – Tests at VSL

Completed

Meter 2: Rotary

Task 1.3 – Tests at NEL

Completed

Diaphragm meter

Reference flow rate, m3/h

Task 1.3 – Tests at NEL

Task 1.3 – Tests at DNV

- Turbine hydrogen-enriched natural gas
- USM hydrogen-enriched natural gas
- Turbine with pure H2

0	$Ggas_1 (p = 32bara)$
V	$Ggas_1 (p = 16bara)$
∇	$Ggas_2$ (p = 16bara)
0	$Ggas + 5\% H_2 (p = 32bara)$
V	$Ggas + 5\% H_2 (p = 16bara)$
0	$Ggas + 10\% H_2 (p = 32bara)$
∇	$Ggas + 10\% H_2 (p = 16bara)$
0	$Ggas + 15\% H_2 (p = 32bara)$
∇	$Ggas + 15\% H_2 (p = 16bara)$
0	$Ggas + 20\% H_2 (p = 32bara)$
∇	$Ggas + 20\% H_2 (p = 16bara)$
∇	$Ggas + 30\% H_2 (p = 16bara)$

Task 1.3 - Outputs

Report on the outcomes of the testing in Task 1.3.

The report will include and assessment of which meter technologies are suitable for use with hydrogen/natural gas blends and for which types calibration with alternative fluids such as nitrogen or air may be applicable.

Recommendations for improvements to commercial meters and further work required to enable accurate flow meters for decarbonised gas grids.

In progress (Q1 2024)

Task 1.4 - Progress

Test flow meters with liquid and gaseous CO_2 for CCS.

Gas and Dense CO₂ small scale

Gas CO₂ large scale

VSL In progress HWU Completed NEL In progress

Task 1.4 – VSL tests Gas CO₂

Metrology for decarbonising

the gas grid

Meter 2: Rotary

Metrology for decarbonising Task 1.4 – Tests NEL/HWU Gas CO2

Metrology for decarbonising the gare of th

Task 1.4 – Tests NEL CO₂

In progress – Completed USMs test with CO₂

2 USMs (4" and 8"), 6" turbine, 3" Coriolis

Task 1.3 - Outputs

Report on the outcomes of the testing in Task 1.4.

The report will include a summary of current performance for commercial flow meter devices for carbon dioxide measurements in CCS as well as recommendations for further improvements. This will form Deliverable D2.

In progress (May 2024)

EMP

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

EURAMET

WP1 Summary

Task 1.1: Understanding operating conditions for decarbonised gas grids

In progress

WP1 Summary

Task 1.2: Traceable flow facilities for decarbonised gas grid

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EURIPR Participating States

WP1 Summary

Task 1.3: Accuracy testing for hydrogen blending in natural gas

Completed

Completed

Completed

In progress (Q1 2024)

WP1 Summary

Task 1.4: Test Programme for carbon dioxide and CCS

Gas CO₂ small scale

In progress

Gas and Dense CO₂ small scale

Completed

In progress

In progress (May 2024)

EMPIR Decarb:

Metrology for decarbonising the gas grid

Thanks!

https://www.decarbgrid.eu/

